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CONSPECTUS: Polydopamine (PDA), a black insoluble biopolymer
produced by autoxidation of the catecholamine neurotransmitter
dopamine (DA), and synthetic eumelanin polymers modeled to the
black functional pigments of human skin, hair, and eyes have burst into
the scene of materials science as versatile bioinspired functional systems
for a very broad range of applications. PDA is characterized by
extraordinary adhesion properties providing efficient and universal
surface coating for diverse settings that include drug delivery,
microfluidic systems, and water-treatment devices. Synthetic eumelanins
from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as
UV-absorbing agents, antioxidants, free radical scavengers, and water-
dependent hybrid electronic−ionic semiconductors. Because of their
peculiar physicochemical properties, eumelanins and PDA hold
considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable
mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been
made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress
toward application has been based more on empirical approaches than on a solid conceptual framework of structure−property
relationships. The present Account is an attempt to fill this gap. Following a vis-a-̀vis of PDA and eumelanin chemistries, it
provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with
physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to
capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical
properties of new melanin-inspired materials, to understand the structure−property−function relationships of these materials
from the bottom up, and to design and optimize materials to achieve desired properties is illustrated. The impact of synthetic
conditions on melanin structure and physicochemical properties is systematically discussed for the first time. Rational tailoring
strategies directed to critical control points of the synthetic pathways, such as dopaquinone, DAquinone, and dopachrome, are
then proposed, with a view to translating basic chemical knowledge into practical guidelines for material manipulation and
tailoring. This key concept is exemplified by the recent demonstration that varying DA concentration, or using Tris instead of
phosphate as the buffer, results in PDA materials with quite different structural properties. Realizing that PDA and synthetic
eumelanins belong to the same family of functional materials may foster unprecedented synergisms between research fields that
have so far been apart in the pursuit of tailorable and marketable materials for energy, biomedical, and environmental
applications.

■ INTRODUCTION

Harnessing Nature’s chemical principles and logic for designing
efficient, sustainable, and biocompatible multifunctional mo-
lecular systems is an important goal in the current quest for
innovation-driven strategies and advanced technological sol-
utions in materials science.1−3A unique source of inspiration for
multifunctional materials is provided by the well-known
property of the catecholamine metabolites 3,4-dihydroxy-
phenylalanine (DOPA) and dopamine (DA) to generate on
oxidation a variety of pigments commonly referred to as

melanins.4−6 Melanins include the following: (a) eumelanins,
the black insoluble photoprotective pigments of human skin
and eyes;7,8 (b) pheomelanins, the pigments of red-haired
individuals with a high propensity to sunburn and skin cancer;9

and (c) neuromelanin, a dark pigment that accumulates within
the dopaminergic neurons of the substantia nigra selectively
degenerating in Parkinson’s disease. Eumelanins are by far the
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most relevant from a biological and technological perspective
and accordingly will be the main focus of this Account. Unlike
the vast majority of natural pigments, eumelanins cannot be
described in terms of a single well-defined structure, and it is
not possible to provide an accurate picture beyond a statistical
description of main units and functional groups. The notorious
difficulties in the structural investigation of natural eumelanins,
due primarily to the amorphous character, the marked
insolubility in all solvents, and the close association with the
cellular ingredients of the biological matrix, have traditionally
dominated the chemists’ attitude toward these elusive pigments.
Nonetheless, the intriguing physicochemical properties of these
polymers,10 including a broadband UV−vis absorption,11 an
intrinsic free radical character,12 efficient nonradiative energy
dissipation,13 and a water-dependent, ionic−electronic hybrid
conductor behavior,14 have gradually attracted the interests of
scientists from diverse disciplines toward exploitation of
synthetic eumelanins as biocompatible multifunctional plat-
forms for application in organic electronics,3,7 biointerface-
s,15hybrid materials,16 and for polymer stabilization17(Figure
1).

Paradoxically, most of the impetus to eumelanin research
over the past few years derived from studies outside pigment
cell research. In an attempt to reproduce the high adhesion
properties of mussel byssus,18 In 2007, Messersmith, Lee, and
co-workers described a universal eumelanin-like coating
material, polydopamine (PDA), produced by the oxidative
polymerization of dopamine (DA) at pH 8.5 in the presence of
oxygen.19 Due to the combination of the functional groups of
the amino acids lysine and DOPA of byssus proteins, PDA
forms highly adhesive polymeric films which can coat many
types of surfaces.
In the most recent few years, the scope of PDA research has

rapidly expanded20−22 to include surface modification,23,24

interfacing with cells,25 light-harvesting systems for energy
applications,26 biosensing,27 and nanomedicine28 (e.g., to
prepare nano- and microparticles,29−31 and nanocapsules for
drug delivery).32,33

Thus far, however, progress in the field has been based more
on empirical approaches rather than on a solid framework of
structure−property relationships. Moreover, only few at-
tempts34,35 have been made to integrate and assess the rapidly
amassing knowledge on PDA structure into the broader context

of eumelanin chemistry. The present Account aims at
translating for the first time emerging knowledge from
eumelanin and PDA research into a common set of
structure−property relationships based on an experimental
and theoretical background.

■ BIOSYNTHESIS VERSUS CHEMICAL SYNTHESIS
Eumelanin biosynthesis in epidermal melanocytes involves
tyrosinase-catalyzed oxidation of tyrosine or DOPA to
DOPAquinone and then to DOPAchrome (Scheme 1). In

vivo, the reaction is assisted by tyrosinase-related protein 2
(Tyrp2), which induces isomerization to DHICA, whereas in
the chemically induced polymerization, the isomerization
reaction proceeds spontaneously with decarboxylation to give
mainly DHI. Oxidative polymerization of DHI and/or DHICA
gives rise to the deposition of black insoluble eumelanin
polymers.36 This implies that natural eumelanins contain a high
proportion of DHICA-derived units, whereas synthetic
melanins from DOPA consist for the most part of DHI-related
units.37

Scheme 1 shows that neuromelanin derives at least in part
from the polymerization of DHI generated by oxidative
cyclization of DA,38 which would warrant inclusion among
eumelanins. The same would apply to PDA.

■ STRUCTURE AND CHEMICAL DISORDER
The general structural properties of DHI and DHICA melanins
have been compared8 and are schematically illustrated in Figure
2.
During biosynthesis, or following polymer buildup, partial

breakdown of indole units may occur due to oxidative fission of
o-quinone moieties, leading to the formation of pyrrolecarbox-
ylic acids (Scheme 2), as demonstrated by MALDI-MS
analysis.39,40

Until 2012, the structure of PDA was minimally inves-
tigated41,42 In 2012, two studies suggested that PDA is a
supramolecular aggregate of monomers (e.g., DAchrome)43

and contains noncovalent components including a physical
trimer of (dopamine)2/DHI derived from a self-assembly
mechanism.44 Subsequent work showed that PDA contains
three main types of structural units (i.e., uncyclized amine-

Figure 1. Overview of DOPA and DA as eumelanin precursors:
chemical structures and current applications of their polymers.

Scheme 1. Biosynthetic and Synthetic Pathways for
Eumelanin, Neuromelanin, and Polydopamine
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containing units and cyclized eumelanin-type indole and
pyrrolecarboxylic acid units derived from the oxidative
breakdown of indole units,34 Figure 3). In line with this view,

an experimental and computational investigation showed that
PDA consists of mixtures of oligomers in which indole units
with different degrees of unsaturation and open-chain
dopamine units give rise to charge transfer interactions between
o-quinoid and catechol units.35

Raman characterization of carbonized PDA nanoparticles
confirmed a layered-stacking graphite-like supramolecular
structure.45 To summarize, natural eumelanins and synthetic
DOPA melanins are structurally different because of the
enzyme-controlled incorporation in the former of a high
proportion of carboxylated DHICA units. Synthetic DOPA
melanin, on the other hand, is similar to DHI melanin, though
carboxylated units from the amino acid may be incorporated to
a detectable extent. PDA differs from DOPA melanin in that it
lacks carboxylated units and from DHI melanin for the
presence of variable proportions of uncyclized amine-
containing units. Finally, PDA is similar to neuromelanin,
although the latter also incorporates sulfur-containing units and
lipid components.37,38

It should be emphasized in this connection that eumelanins
are not true polymers or macromolecules and that likewise the
term “polydopamine” is misleading, for the following reasons:
(a) MALDI-MS analysis has indicated 30−50-mers as the
limiting oligomer size for model synthetic 5,6-dihydroxyindole
melanins46 and mixtures of low molecular weight (up to
octamers) oligomers for PDA;34,35 (b) PDA does not arise by
dehydrative condensation of DA to form a polymer, as the
name could suggest. Thus, the term “dopamine melanin” is
more appropriate than “polydopamine” and is strongly
recommended by the present authors. Herein, we retain the
widespread term “polymer” and the prefix “poly” solely to
denote “polymer-like” properties.
The foregoing survey clearly shows that the structure and

physicochemical properties of eumelanins imply various levels
of chemical disorder,47 which are schematically illustrated in
Scheme 3.

Monomer disorder relates to the variety of monomer
building blocks participating in the polymerization process.
Size disorder stems from the formation of collections of
oligomers of gradationally increasing masses.46 Molecular
disorder denotes the degree of structural diversity based on
the variety of scaffolds or positional isomerism due to different
coupling modes. Electronic disorder relates to the distribution
of redox states (i.e., catechol, semiquinone or quinone) within
the oligomeric scaffolds. Supramolecular disorder depends on
the variety of aggregates that can be generated by
intermolecular interactions between molecular components,
for example, π-stacking interactions (DHI units) or bundling
aggregations (DHICA units).8 Thus, whatever the detailed
molecular composition and the nature of the supramolecular
aggregates, eumelanins and PDA are characterized by a huge
chemical disorder, and control of this disorder may allow the
shaping of the materials’ properties. In turn, control over
structural properties is crucial to determine the properties of
the final material and its possible functional role or application.

Figure 2. Representative structures of DHI and DHICA melanins.
DHI melanin appears to consist of largely planar oligomeric scaffolds,
although DHICA melanin is made up of twisted linear oligomer
structures featuring atropisomerism caused by slow rotation about
interunit bonds.

Scheme 2

Figure 3. Representative models for PDA structural components
based on Liebscher et al.35 (left) and Della Vecchia et al.34 (right).

Scheme 3. Simplified Scheme of Chemical Disorder Levels
in Eumelanins Realized through Structural Definitions at
Multiple Length-Scales in the Hierarchy of the Material
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■ CHEMICAL CONTROL AND MANIPULATION
Schemes 1 and 3 suggest three different strategies to control
chemical disorder, namely, monomer selection, rational
structural manipulation at critical control points, and
experimental control over polymerization/aggregation.

Monomer Selection and Derivatization

Proper selection, derivatization, or functionalization of
monomer substrates is an important means of controlling
structure and properties. For example, recent studies provided
an explanation as to why nature selected DHICA rather than
DHI as the prevalent eumelanin building block,37which would
be counterintuitive considering that DHI is more oxidizable
than DHICA and gives rise on oxidation to black insoluble and
compact π-stacked materials. A systematic comparison showed
in fact that DHICA melanin is a more efficient free radical
scavenger than DHI and DOPA melanins and can induce
efficient energy dissipation via excited state intramolecular
proton transfer (ESIPT) processes not available to DHI
oligomers.13,48·
In addition, monomer chemistry can be modified by

derivatization or installment of specific groups (Figure 4).

Derivatization of DHI with (S)-galactosyl groups has been
used to develop the first example of water-soluble eumelanin-
type polymer.11 Use of glycated derivatives of DOPA is another
promising strategy to produce soluble eumelanins due to the
ability of the sugar moiety to prevent polymer precipitation.49

Manipulation of DHI π-electron system through substitution
with alkynyl groups provides a valuable entry to novel
eumelanin-like materials for investigation in organic electronic
applications.50 Modification of DA monomer can be carried out
at different levels. Norepinephrine (NE) has been shown to
produce ultrasmooth coatings of poly norepinephrine (PNE)51

due to the presence of the beta-OH group accounting for
extensive oxidative breakdown of the catecholamine side chain
during autoxidation.52 6-NitroDA has been successfully used to
prepare a photochemically cleavable unit for polymerization
reactions and cross-linking with polymeric materials.53 6-
ChloroDA was used to produce adhesive polymeric films
with antibacterial properties.54 Conjugation of DA with

cysteine leads to 5-(S)-cysteinylDA which has been shown to
enhance the photoresponse of PDA coatings to set up a hybrid
photocapacitive/resistive metal−insulator-semiconductor
(MIS).55 Copolymerization of DA with aromatic amines, such
as 3-aminotyrosine or p-phenylenediamine, has been used to
modify the electrical properties of PDA in a metal−insulator−
semiconductor device.56

Structural Control Points

DOPAquinone is the initial control point of DOPA melanin.57

It cyclizes at very fast rates to produce DOPAchrome but is a
potential target of reactive nucleophilic species and may be
useful to modify the properties of DOPA melanin.
DOPAchrome rearrangement is the major control point for
DOPA melanin: at neutral pH, it gives DHI as main product,
but in the presence of metal cations isomerization is deviated
toward the nondecarboxylative DHICA-forming pathway58

(Figure 5). DAquinone is the key control point of PDA and

cyclizes at ca. 100 times slower rate than DOPAquinone:59 at
high DA concentrations, dimerization is the prevalent pathway,
at low DA concentrations, intramolecular quinone cyclization
or covalent incorporation of Tris buffer are major processes
(Figure 6).34

Figure 4. Functionalized eumelanin precursors and DA derivatives for
diverse applications. The photochemistry of 6-nitroDA for debond-
ing53 is highlighted.

Figure 5. Scheme showing DOPAquinone and DAchrome as the
major control points for the chemical manipulation of DOPA melanin.

Figure 6. Scheme showing DAquinone as the major control point for
chemical manipulation of PDA.
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Control on Polymerization and Aggregation

Tris buffer can be used as an efficient modulator for the control
and fine-tuning of PDA properties and aggregate size/
morphology.60 Addition of poly(vinyl alcohol) (PVA) to
phosphate buffer is a valuable means of inhibiting eumelanin
aggregation and precipitation during oxidative polymerization
of DHI and DHICA,61 leading to water-soluble eumelanins of
potential technological relevance. Physical constraint over DHI
polymerization can be exerted by insertion into zeolite L.16

Under conditions of high ionic strength, DOPA also forms
good films on a variety of substrates by oxidation in alkali.62 A
new strategy to manipulate the aggregation of PDA with
formation of nanobelts and nanofibers is reported on the basis
of the addition of folic acid during dopamine oxidation.63

■ IN SILICO MODELING APPROACHES FOR
PROPERTY PREDICTION AND TAILORING

The preceding section has shown that experimental control
over the structure and composition of eumelanins and related
materials are currently yield based on empirical approaches.
Nonetheless, the rational design and tailoring of synthetic
eumelanins and PDA-based materials may greatly benefit from
the current advances of “in silico” modeling approaches which
yield considerable insight into eumelanin architecture and
properties.
Atomistic simulation methods, such as density functional

theory (DFT) simulation and molecular dynamics (MD)
simulation, can serve as powerful tools to predict the
physicochemical properties of materials.64−66 Provided that all
atom positions and charges are known, atomistic simulation
opens the possibility to understand the structure−property−
function relationships of materials from the bottom up
approach and to design and optimize materials to achieve
desired properties. There are several major challenges in
computational modeling for PDA and synthetic eumelanin,
which may partly explain the limited progress from a
computational perspective. Large-scale simulations, which
contain at least hundreds of molecules, are necessary in order
to capture the macroproperties of eumelanin-like materials due
to their amorphous and hierarchical structures. In addition, the
lack of well-defined and readily available structures for PDA and
eumelanin hindered rapid progress of computational modeling
in this field.7,67

Computational Modeling Methods

Small-scale simulations with no more than three molecules are
less likely to reproduce the macroscopic properties of
eumelanin-like materials, since they are believed to be
amorphous yet made of hierarchical structures.68−72 Large-
scale simulations for eumelanin-like materials can be simply
classified into two different approaches: the monomer-based
approach and the molecular-based approach. In the monomer-
based approach, the building blocks in a system are DHI and/
or DHICA monomers. It might be possible to model the
chemical reactions and polymerization of these monomers and
to predict the structures of protomolecules of PDA and
eumelanin. To-date, there is no appropriate computational
modeling method that can address this complex reaction
environment, and thus no computational work has successfully
and directly modeled the polymerization of DHI and/or
DHICA monomers and predicted the structures of proto-
molecules.73 Regarding the polymerization pathway, a con-
venient semiempirical monomer-based approach has been

proposed on the basis of the two most possible cross-linking
sites of DHI monomers, at 2,4′ and 2,7′ positions.74 Combined
with nonreactive MD simulation techniques, this method can
be applied to large-scale simulations containing hundreds or
even thousands of molecules. In molecular-based approach, the
building blocks in a system are eumelanin protomolecules that
do not react further.75,76 This method is also good for large-
scale simulations. The accuracy of this method depends on the
structural models of protomolecules used in the simulations
since the chemical reactions and polymerization of the
monomers do not need to be modeled. DFT calculations had
been used previously to propose structural models of
eumelanin based on the formation energy.67 However, it is
almost impossible to calculate formation energies for all
possible structures of protomolecule due to the chemical
disorder. For instance, DHI monomer has four reactive sites
and three different oxidation forms (e.g., indolequinone (IQ),
quinone-methide (MQ), and quinone-imine (NQ)), implying
billions of different possible structures of DHI melanin
protomolecule, if the molecular size is considered up to an
octamer.
Structural Properties

The hierarchical structures of eumelanin-like materials can be
classified into three structural levels (Figure 7). The

protomolecules are the primary structures and are considered
to be made of DHI or DHICA monomers in various redox
forms. Protomolecules from DHI are near-planar structures and
tend to stack together due to strong noncovalent intermo-
lecular interactions such as van der Waals and π−π interactions.
The stacked structures formed by protomolecules are suggested
here to provide the “secondary structures” (see also Meredith
and Sarna10). Large-scale MD simulation showed that
secondary structures of DHI melanin could include a dozen
of protomolecules.75,76 Larger amorphous structures (“aggre-
gate structures”) formed by weak noncovalent interactions
between the secondary structures in random-like orientations
are the tertiary structures. This kind of amorphous structures
had been seen in TEM images and MD simulation results
(Figure 8).
Mechanical Properties

Large-scale MD simulation results showed that DHI melanin is
an isotropic material with the Young’s modulus around 5.4−7.8
GPa, calculated from self-assembly of different oligomeric
models including tetramers, pentamers, and octamers.75,76 The
isotropic property comes from the random-orientated aggregate
structures in the material, and thus, this feature can only be
captured in large-scale simulations. The simulated mass
densities were in the range of 1.54−1.61 g/cm3 with different
oligomeric models.75,76 These simulation results were close to

Figure 7. Hierarchical structures of DHI melanin. (a) Primary
structures are protomolecules. (b) Secondary structures are formed by
stacked protomolecules. (c) Tertiary (aggregate) structures are formed
by weak noncovalent interactions between the secondary structures in
random-like orientations.
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the experimental measurements of eumelanin-like materials,
suggesting that the oligomeric models used in the simulations
might be similar to the actual protomolecules.
Optical Properties

The broadband UV−vis spectrum monotonically increasing
toward the higher-energy end might be a result of chemical
disorder in the primary structure and excitonic effects in the
secondary and aggregate structures. If the excitonic effects
among the protomolecules can be properly calculated in a

large-scale system, which is able to capture the hierarchical
structures of eumelanin-like material, the broadband absorption
spectrum can be reproduced even with few kinds of
protomolecules.10,76 Compared to the mechanical properties,
the optical properties of eumelanin-like materials are more
sensitive to the structures of protomolecules. It is impossible to
determine eumelanin protomolecules from its broadband
absorption spectrum. However, a proper computational
modeling method, which is able to calculate the optical
properties of eumelanin hierarchical structures, can serve as a
useful tool to evaluate the structural models. Most importantly,
one can use computational modeling techniques to design and
optimize the optical properties of eumelanin-like materials to
achieve even better optical properties compared to natural
eumelanin.

■ FROM STRUCTURE−PROPERTY−FUNCTION
RELATIONSHIPS TO A UNIFYING TAILORING
STRATEGY

Most of the studies of synthetic eumelanins have been
performed either on commercial materials with ill-defined
properties or on DOPA melanins produced under various
conditions, and few systematic studies have been reported
concerning the effect of synthetic conditions on the properties
of eumelanins.42,44 An important technological goal in PDA
research, for example, is the control of film properties and
thickness. PDA films of different thickness and roughness on
atomic force microscopy (AFM) analysis can be obtained by
just changing DA concentration and buffer.77 Although it is not
possible with a single deposition to achieve thickness values
beyond a given threshold, it is possible to circumvent this issue
by depositing successive stacks of PDA at a given DA
concentration (2 mg/mL or 10 mM), by simply putting a
fresh catecholamine solution in contact with the previously
deposited PDA film. The overall thickness of the PDA coating
would then be an integer multiple of the thickness obtained at
each deposition step (about 40−45 nm in these experimental
conditions and after 20−24 h of deposition in each step).42,78

Figure 8. Experimental and computational results of structural
models.75 (a) Snapshot of the simulated aggregate made of 375
DHI melanin protomolecules at the steady state of self-assembly. (b)
Typical TEM micrograph of eumelanin produced from the oxidation
of dopamine. (c, d) High-resolution TEM images of eumelanin on
other locations of the TEM grid. The inset of panel c shows a SAED
pattern taken from the green-boxed region. The red arrow in panels c
and d indicates that the molecules aggregate and form an onion-like
nanostructure composed of stacked planes arranged in concentric
rings. Reproduced with permission.

Scheme 4. Unifying Tailoring Strategy for PDA and Eumelanin Synthesis
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The structures of eumelanins may vary significantly depend-
ing on such parameters as substrate concentration,77 nature of
the oxidant,78 reaction medium (e.g., buffer,78,79 additives,80

etc.), and postsynthetic processes. Oxidation may be carried out
with oxygen (O2) under alkaline conditions, with chemical
oxidants or electrochemically, and depending on conditions
material composition and properties may vary.81,82 Though the
medium is usually alkaline, acidic conditions may be used in
combination with chemical oxidants to inhibit intramolecular
cyclization of the resulting DAquinone.83,84 Additives that can
be used include 3,4-dihydroxybenzaldehyde, to produce
smoother PDA films,51 and metal cations, to affect both
DOPA and DA oxidation and structural properties.58,78

Workup under mild conditions is recommended to prevent
breakdown of quinone units, decarboxylation, and degradation.
A unifying picture of the experimental approaches for

eumelanin manipulation and tailoring based on the foregoing
strategies is illustrated in Scheme 4.
The key concept underlying Scheme 4 is that rational design

of experimental protocols based on proper selection of
substrates, parameters, and conditions may allow the exertion
of efficient control over eumelanin and PDA structure, which in
turn may serve to enhance certain properties rather than others
finalized to applications (tailoring). The unifying conceptual
framework proposed in Scheme 4 shows moreover that it is
possible to obtain materials with similar properties using
different monomer precursors through proper manipulation at
critical control points. The potential of this unifying frame can
be exemplified by the possibility of synthesizing a DHI-based
eumelanin polymer with efficient visible light absorption and
semiconductor properties from three different monomer
precursors (i.e., DHI itself, DOPA in the absence of metal
ions, and DA at low concentrations). On the other hand, use of
Cu2+ ions may allow the production of a DOPA melanin with
enhanced antioxidant and free radical scavenger properties.
Verification, modification, and integration of the unified
tailoring scheme based on emerging structure−property−
function relationships may stimulate further progress in
eumelanin research and technology at multidisciplinary level
for energy, biomedical, and environmental applications.
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